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III. Introduction

The overall goal of the proposed research is to apply new calculational
methods towards the discovery and development of novel drugs for the treat-
ment of breast cancer. The research is focused on analyses of publically
available databases of compounds that have been screened against selected
panels of tumor cell lines. These databases tabulate the ability of candidate
compounds to limit the growth of tumor cells. The project will conduct a
detailed analyses of these data to determine which classes of compounds are
most effective against selected tumor cell panels. Calculational methods ini-
tially focus on cluster analysis, directed at the identification of compounds
that elicit the most similar responses across tumor cell types. This analysis
is conducted in parallel with a similar analysis based on common structural
features between tested compounds. The results from each of these anal-
yses provide a means to relate functional properties (i.e. inhibition of cell
growth) to structural features of tested compounds, thereby creating a foun-
dation for comparisons with similar databases of information. The project
will initially focus on the extraction of compounds that represent completely
novel agents, agents with structurally and functionally unique descriptors,
from compounds similar to previously tested agents. The intention will be
to contrast results between various tumor panels, and from this differential
activity identify compounds most active against tumor cells within the breast
panel. A secondary component of this analysis will be the characterization of
activities within and between different tumor cell panels. These differences
can then be analyzed in the context of genomic expression profiles, as they
become available.




IV." Body

We are currently on schedule with respect to our proposed statement
of work (SOW). Summary statements for each of these Tasks are provided
below. In general, this research project is proceeding according to the pro-
posed work scope. The research listed as Task 1 has resulted in a recently
submitted manuscript for a peer reviewed journal (see Appendix). A second
manuscript, documenting our results for Task 2, is currently nearing com-
pletion. Task 3 extends into the next year, however, it is included in the
BODY description because we are beginning this phase of the project and
have additional information to report.

A. Task 1: Months 1-6: Tabulation of Cell-Line Screen-
ing Data. Develop computer programs to analyze
these data

The NCI has currently tested nearly 30,000 synthetic products against a
panel of 60 selected tumor cell lines. Endpoints of the NCI’s 60 tumor cell line
screen include the growth inhibitory activity (log(GIs)) of each compound,
expressed as the drug concentration required to inhibit cell growth by fifty
percent compared to an untreated control. Log(GIsp) values for a single
compound across all 60 tumor cell lines provide an activity pattern which can
be compared to patterns for other tested compounds. A systematic analysis
of this data began with a variety of statistical tests to 1) evaluate the quality
of this data, 2) identify and resolve data entry errors versus real errors, and
3) reduce this dataset to data of the highest quality for further evaluation.
Our initial research effort focused on cell screening data for a set of standard
anticancer agents currently used in the clinic. This initial set comprised 122
compounds and the screening data against these compounds should provide a
strong reference point for comparisons to compounds in larger test sets. The
manuscript included in the Appendix provides a detailed description of our
efforts to organize the cell-screening data and develop computer programs to
analyze the data from the 122 standard agents. Without major redundancy,
we summaize these findings as reported in the Abstract.

Computational programs were successfully completed for statistical anal-
ysis of the cell-screening data. Data analysis with these computational tools




found that the 122 standard agents could be divided into 25 statistically
distinct groups. Within these groups, 8 groups include structurally diverse

, compounds with reactive functionalities that act as DNA-damaging agents
while 17 groups include compounds that inhibit nucleic acid biosynthesis and
mitosis. These data provided a reference response for agents against each of
these 60 tumor cell lines. A companion analysis directed at clustering each
of the cell types by their response to the 122 anticancer agents divided the 60
tumor cell types into 21 groups. The strongest within-panel groupings were
found for the renal, leukemia and ovarian cell panels. A coherent set of cells
within the breast cancer cell lines was found, however, a stronger coherence
was found between breast, prostate and colon cell lines.

B. Task 2: Months 6-10: Group active compounds and
find substructure similarities identified in Task 1.

The functional clusters obtained within Task 1 provide a means to com-
pare activity patterns with substructure features. A diverse set of structural
features are observed for compounds within these functional groups, with fre-
quent occurrences of strong within-group structural similarities (see Figure
1 of the attached manuscript). This analysis provides a baseline for fur-
ther comparisons within the larger set of tested compounds. Using standard
1D substructure similarity searches, based largely on SMILES-based descrip-
tors, a list of 272 compounds are found within the NCI's database of tested
compounds with strong structural similarity to the set of 122 standard anti-
cancer agents. The tumor cell-line screening data for these compounds has
been examined using the tools developed in Task 1. It is noteworthy that the
majority of compounds in this expanded dataset share structural similarities
with the antimitotic agents in the 122 standard agents thought to be active
against breast cancer. Thus this set, totaling 394 compounds, provides a rich
starting point for closer examination of relationships between potency and
cell specificity for these agents.

Our computational tools have been successfully used to identify the great-
est overlaps between statistical clusters based on functional data (i.e. pat-
terns in the cell-line screen) and clusters based on structural features. The
goal here is to reorganize sets of functional and structural clusters so as
to maximize compound membership within each cluster. Analysis of the




log(G1I5) data finds that the 394 compounds represent 60 functional clus-
ters. Using the methods developed in Task 1, the distances between each
set of NSC compounds, as determined by their patterns in the 60 tumor
cell screen, are calculated and displayed spectrally in Figure A. Dark blue
indicates compounds with the closest response patterns, green, intermediate
and red the most distant response patterns. In this figure the compounds
within the same cluster appear together and the clusters have been ordered
such that the most similar patterns appear adjacent to each other. In this
figure, alkylating agents appear in the top left-most portion of the figure,
agents that act as antimitotics are in the middle and agents that act as in-
hibitors of nucleotide biosynthesis appear at the lower right portion of the
figure. Although each of the 60 clusters will not be described in detail here,
individual clusters appear in this figure as blocks of dark blue (i.e. close
response neighbors) along the diagonal.

Our analysis of the structural similarities of these compounds finds that
there are 150 structural classes within this set of 394 compounds. The 60
functional clusters and the 150 structural clusters are further examined for
clusters that share the greatest number of compounds. The intention here
is to identify those compounds that share both structural and functional
similarity. These compounds provide a basis for assignment of a structural
pharmacophore. This pharmacophore can be used to identify additional com-
pounds that might exist within larger databases. More importantly, how-
ever, this pharmacophore can be contrasted with compounds that share this
structural feature, but are associated with a completely different functional
response. Such differences can be used to suggest distinctive substructural
features that may be related to each different functional response. Figure
B displays those compounds that appear jointly in a structural and func-
tional cluster. A one-to-one correspondence between functional and struc- .
tural clusters would appear as a diagonal line in this plot. Since there is
not a one-to-one correspondence (i.e. there are an unequal number of func-
tional and structural clusters), a near-diagonal location indicates such a cor-
respondence. The compounds in Figures A and B are ordered identically,
so that a visual comparison can be made between functional classes (Figure
A) and structural classes (Figure B). Examination of the compounds at var-
ious diagonal positions of this plot reveals a strong correspondence between
structural features and their putative mechanism of action. Thus alkylat-




ing agents, which appear as the first 100 compounds in Figures A and B,
share a variety of functional features, most notably chloro-ethylating groups.
Compounds appearing along the diagonal at the middle and lower right por-
tions are less structurally diverse, and by examination represent structurally
coherent groups of compounds.

In summary, this effort has produced a tool for careful examination of
cluster overlap for any chosen clustering scheme. As a result, a consen-
sus cluster order ¢an be achieved, based on multiple clustering schemes and
diverse data (structural versus functional). These consensus clusters are cur-
rently being examined in an effort to generate the most dominant structural
features shared by compounds within a given cluster. As an example, the sub-
set of compounds derived from the natural product family of trichothecenes
(otherwise referred to as VERRUCARIN), has been found to produce-a dis-
tinctive response within the cell screen. This family of compounds represents
a case with unique structural and functional features. A detailed examination
of this unique response in currently underway. The above research results
are currently being developed in a manuscript, estimated to be completed
during the last quarter of this calendar year. '

C. Task 3: Months 11-18: Develop initial consensus
models of drugs active against breast cancer cell-
line.

As indicated in the description of Task 2, the 394 compounds derived from
the standard 122 agents and analyzed with our new computational tools in-
cludes a large group of compounds thought to act as antimitotics. Our results
from Tasks 1 and 2 have led to the development of tools for examining corre-
lations between structural and functional clusters. This information, coupled
with additionally available tools for structural analysis, is being applied to
this dataset. The immediate goal is to clearly identify a structural pharma-
cophore that spans one or more of the consensus clusters for the antimitotic
agents. This pharmacophore (or pharmacophores) will then be used to scan
the entice set of compounds listed in the NCI’s database. Currently this
database includes nearly 400,000 structures, with cell screening data avail-
able for only 10 percent of these compounds. The intention here is to identify
a population of untested compounds with strong structural similarities within




the set of 394 compounds. From this set of compounds, additional screening
tests will be requested. The screening effort will take place simultaneously
with the modeling studies of ligand docking to selected available crystallo-
graphic structures. Although the currently available crystal structures of
tubulin are the initial choice for docking studies, we have additional evidence
that selected antimitotic compounds may also preferentially alkylate DNA.

10




Functional Clusters, 394 Compounds

Figure A
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VII. Key Research Accomplishments

e High quality refinement of NCI tumor cell screening data

e Development and application of statistical clustering software for anal-
ysis of tumor cell screening data

e Identification of compound clusters based on similarities in activity
patterns in the cell screen

e Integration of clustering results based on screening dataset and clus-
tering results based on substructure identification

e Implementation of tools for efficient scanning of entire NCI database
of small synthetic molecules

VIII. Reportable Outcomes

The results obtained in Task 1 were presented at two national meetings
for the Biophysical Society and the Protein Society. Both of these meetings
led to scientific communications with others in the field of breast cancer
research. The manuscript reporting our results from Task 1 is sttached in the
Appendix. This paper has been submitted the the journal, Cancer Research.

IX. Conclusions

The current research results provide a systematic analysis of the currently
available data from the NCI’s cancer screening project. Our efforts, to date,
have established a link between the activity patterns from the tumor cell
screen and the common structural features of the tested compounds. Our
analysis has identified a subset of antimitotic agents for which cell screening
data does not yet exist. Efforts to examine these compounds for common
substructures are currently underway.

13
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Abstract

An analysis of the growth inhibitory potency of 122 anticancer agents available -
from the National Cancer Institute (NCI) anticancer drug screen is presented.
Methods of singular value decomposition (SVD) were applied to determine
the matrix of distances between all compounds. These SVD-derived
dissimilarity distances were used to cluster compounds that exhibit similar
tumor growth inhibitory activity patterns against 60 human cancer cell lines.
Cluster analysis divides the 122 standard agents into 25 statistically distinct
groups. The first 8 groups include structurally diverse compounds with
reactive functionalities that act as DNA-damaging agents while the remaining
17 groups include compounds that inhibit nucleic acid biosynthesis and
mitosis. Examination of the average activity patterns across the 60 tumor cell
lines reveals unique ‘fingerprints” associated with each group. A diverse set of
structural features are observed for compounds within these groups, with
frequent occurrences of strong within-group structural similarities. Clustering
of cell types by their response to the 122 anticancer agents divides the 60 cell
types into 21 groups. The strongest within-panel groupings were found for
the renal, leukemia and ovarian cell panels. These results contribute to the
basis for comparisons between log(GI(50)) screening patterns of the 122
anticancer agents and additional tested compounds. (IRSP, SAIC Frederick,
NCI-FCRDC; Funded in part by NO1-56000, DAMD17-98-1-8323 and the ARMY
Breast Cancer Research Project) '




Introduction

Development of high-throughput screening technologies in drug discovery
has led to dramatic increases in the diversity of compounds that can be tested
[1-3] and in the types of targets available for testing [4-11]. Accompanying these
advances has been the development of a diverse collection of general
approaches for mining the large quantity of data generated by these systems
[12-20]. Database-related, information-intensive drug discovery efforts [21] are
showing promise in revealing relationships between drug screening profiles
and potential therapeutic targets. Extending these efforts by further
exploration of relationships between screening profiles and chemical
structures may enhance the discovery of novel chemotherapeutic agents.

In this paper we reexamine the publicly available data from the cancer drug
discovery program at the National Cancer Institute (NCI). Our goal is to
systematically analyze the relationship between 1) the growth inhibitory
activities for a set of anticancer agents from the panel of 60 tumor cell lines, 2)
the structural features of the tested agents and 3) their apparent mechanism of
growth inhibitory action (MOA). Based on the hypothesis that selective in
vitro activity of a compound against cancer cell lines might be predictive of its
activity against the corresponding specific type of human tumor, the NCI has
developed and made available, results of primary drug screens against 60
different human cancer cell lines (http://dtp.nci.nih.gov). Among other

endpoints available in the NCI's database, the growth inhibitory activity of
each compound, expressed as the drug concentration (GI50) required to inhibit

tumor cell growth by fifty percent compared to an untreated cell was selected
for analysis. Log(GI50) values for a given compound across all tumor cell lines
provide its activity pattern for comparison to patterns from other tested
compounds. Similarities in patterns of in vitro inhibitory activity have been
shown to be related to MOAs, modes of resistance and molecular structure [4,
16, 19-24]. To date, the NCI has screened over 70,000 chemical compounds and
a similar number of natural product extracts against a panel of 60 different

tumor cell lines.

Several algorithms have previously been applied to analyze activity patterns.
These algorithms utilize, in various ways, the tools of multivariate statistical




clustering [25]. As an example, the internet accessible program COMPARE [22,
23] uses Pearson correlation coefficients (PCCs) to extract compounds with
screening patterns similar to a 'seed’ compound. Applications of back-
propagatioh neural networks [26] and Kohonen self-organizing maps [27] have
demonstrated varying success when predicting MOA, and grouping
compounds based on similar activity patterns. These methods also
complement the COMPARE program by identifying clusters of 'seed’
compounds, thus addressing the important question of whether a 'seed’
compound appears on the lists of highly correlated activity patterns for all
other 'seeds’ in the dataset. Statistical and artificial intelligence techniques,
including principal component analysis, hierarchical cluster analysis, stepwise
linear regression and multidimensional scaling, have begun to be applied to
the NCI's screening data [28, 29].

Structurally similar compounds can have similar physicochemical properties
and thus are thought to have similar biological activities, consistent with the
similarity property principle [30]. For example, a dramatic coherence between
molecular structures and activity patterns was observed for 112 ellipticine
analogs [19]. Detailed crystallographic and NMR studies further support the
similarity property concept by demonstrating that ligand-receptor interactions -
are characterized by complementary shapes and chemical characteristics [31-
34]. Cell-based screening assays represent a complex array of interactions that
is monitored as cell growth or killing (e.g. log (GIsp)). Differential activity
patterns in these measurements can result from the activity of compounds
that interact well, poorly, or not at all, with one or many targets within the
panel of cell types. Earlier attempts to establish correspondences between
activity patterns, MOAs and chemical structure found general clustering a) for
compounds of similar chemical structure, and b) for compounds classified as
having a similar mechanism of action (MOA), yet having diverse chemical
structures [28]. Distant clustering was also found for compounds similar in
chemical structure but having different MOAs [28]. Earlier studies by Paull et
al. [23, 20] demonstrated that anticancer agents having similar functional
groups (e.g. chloroethylating agents, platinum analogs and nitrosoureas)
produce similar activity patterns in cell-based screens. However, there are
some compounds that display a relatively strong structural similarity, and yet
exhibit drastically different activity patterns. Alternatively, compounds with




similar activity patterns can have little structural correspondence to one

another.

The present analysis identifies clusters of anticancer compounds based on
their log(GI50) activity patterns in NCI's data for 60 tumor cell lines. The
analysis is performed on the set of 122 standard anticancer agents available in
the NCI's Developmental Therapeutic Program's database. Here we adopt
singular value decomposition (SVD) [35-39] and hierarchical clustering
methods [40] to cluster the chemotherapeutic agents. Compounds clustered
with these methods are to be compared by their assigned MOAs and their

structural similarities.
Methods

Variance-based measures of similarity rely on the spread in a dataset to
determine membership within a cluster. Principal component analysis (PCA),
SVD, D-optimal design and k-nearest neighbor clustering are commonly used
as variance-baséd methods. These have as their overall goal, the
minimization of noise-to-signal ratio [41]. The SVD approach has been shown
to be a powerful method to filter noise and enhance the information content
of the original data [35-38]. Similarly to PCA, SVD defines rotation of axes
(principal components) so that columns in the data matrix maximize their
standard deviation with respect to other columns in the dataset. This
transformation yields a new space where the columns of data exhibit
maximum variance (i.e. minimum correlation) with respect to one other. The
original data can be re-expressed approximately as a linear combination of a
few dominant principal components. This new space, referred to as the SVD
space, has previously been effectively used, for example, to classify words
within texts [36], and protein structures with respect to their amino acid
composition [42].

SVD analysis is used here to classify anticancer agents by examining their
log(GI50) values in the 60-dimensional space of the cancer cell lines. This
space is transformed into an SVD space, where the anticancer agents are
represented by activity arrays emphasizing their differences. The compounds
are clustered on the basis of their pairwise distances in the SVD épace, by using
hierarchical clustering algorithms [40]. The calculations discussed below have




been coded into a Fortran program, which is available upon request. Many of
these calculations can also be completed using the SAS library of utilities.

In general, the SVD of a given matrix A yields three matrices U, A, and V
which comprise (i) the singular values A; of A, organized in ascending order
in the diagonal matrix A, (ii) the orthonormal transformation matrix U
ensuring the passage between the original coordinate frame and the SVD
frame, and (iii) the normalized representation, VT, of the original matrix in
the SVD Space. A is expressed as the product as these matrices

‘Amxn = Umxm Amxm VTnvm (1)

where the subscripts denote the dimensions of the two dimensional matrices,
and the superscript T indicates the transpose. In general, the columns of A
each represent a given quantity (here anticancer agents) characterized by m
properties (activity patterns for 60 cell lines); whereas those of the product
AVT are the same quantities expressed in the SVD frame which best describes
the similarities/ differences between these quantities on the basis of their n
properties. In the present application of the SVD method to anticancer
compound screening data, each column of A, conveniently denoted as aj, is a
60-dimensional vector describing the activity pattern of a given drugi (1 <i
< 122), expressed, in terms of the logGIsg values observed against the 60 tumor
cell lines. Therefore the SVD of a 60 x 122 matrix is performed, using the
dataset of n = 122 anticancer agents screened against m = 60 cell lines. The ijth
element of this matrix (or the jth element [aj]; of the ith column aj) is defined

as
Ajj = [aj}j = Axjj - <Ax>; )

where xjj is the logarithmic concentration of the anticancer agent i for the

inhibition of the growth of the jth cell line by fifty percent, designated as
[logGlIsplij, and Axjj is the differential change in this value relative to the
average cytotoxic potency, < logGlsp>j, of the particular agent over the entire

panel of cells, i.e.

Axjj = [log GI50]ij - < log GIsp>i (3)




and finally <Ax>j is the average of Ax;j over all agents for the particular cell
line. Subtraction of <Ax>jin eq 2 eliminates the differences arising from the
generic characteristics of the particular cell lines, and permits us to emphasize
more clearly the differences among activity patterns of the anticancer agents.
The activity fluctuation pattern of the ith agent in the SVD space is
represented by the ith column vT; of VT pre-multiplied by A, and designated as
a;* = AvT; such that the SVD distance between agents i and j is

dij = [(ai*-aj*)® (ai*-aj*)]1/2 = [(AVTi-AVTj) o (AWVTi-AVIIY2 - (4)

The above distances constitute the basic measure for clustering the anticancer
agents into groups in the present SVD analysis. The analyzed set includes 122
compounds with six putative MOAs: 35 alkylating agents, 24 antimitotic
agents, 16 topoisomerase I inhibitors, 19 topoisomerase IT inhibitors, 16
RNA/DNA antimetabolites, and 13 DNA antimetabolites.

Results

The results of clustering compounds according to their pairwise SVD
distances are listed in Table 1. Clusters obtained from pairwise distances place
compounds with the most similar activity patterns adjacent to one another.
Using this approach, clusters are ordered such that compounds with the
greatest and least similarities in their SVD distances are presented first and
last, respectively, in Table 1. Figure 1 displays the 2D structures of the
compounds within each cluster.

Statistical clustering of these patterns was obtained using the SAS/STAT
clustering algorithms. The cubic clustering criterion (CCC) was selected to
determine cluster membership. This criterion estimates the number of clusters
based on minimizing the within cluster sum of squares. The CCC calculation
generates a rough approximation to a 'goodness of fit' measure under the null
hypothesis that the data are sampled from a uniform distribution on a hyperbox
(p-dimensional right parallelpiped). A t-test statistic with one degree of freedom
(t=3.078, p<0.05, n=1) is generated for testing the null hypothesis that a
compound’s SVD distance pattern is not different from a given cluster (i.e.
cannot be excluded from the cluster). This method has been shown to help




determine cluster number for both univariate and multivariate data with small
sample sizes (n~20). See SAS Technical Report A-108 for additional details.

The results of this analysis find that the 122 standard agents can be clustered into
25 groups, labeled GROUPS 1-25, and listed in Table 1. Fifteen of these groups
have at least 2 members, while the final 10 groups consist of a single agent.
Figure 1 displays the molecular structures of these compounds, ordered according
to the GROUPS 1-25 in Table 1. The list of compounds in each group in Table 1
includes their putative MOAs and characteristic structural/functional groups.
Multiple compounds within each group cannot be further subdivided on the
basis of their log(Glsg) patterns. However, structural similarities within clusters

can be easily found by inspection of Figure 1.

Group 1 is composed of 38 compounds coﬁsisting predominantly of alkylating
agents (23 compounds), topoisomerase II inhibitors (9 compounds), DNA
antimetabolites (5 compounds) and a single RNA/DNA antimetabolite.
Alkylating agents are antitumor drugs that act through covalent binding of
their alkyl groups to cellular molecules [43, 44]. Many of these are proposed to
attack the N-7 or O-6 atoms on guanine in the DNA major groove, and to
cross-link DNA strands [43, 44]. Cross-linked products are removed by an
alkyltransferase DNA repair enzyme, via a repair mechanism known to be
deficient in certain tumors. The first two members of this group are
compounds bearing two or more aziridine or oxirane groups (296934 and
182986). These are analogs of the putative closed-ring intermediates of the
nitrogen mustards, but are believed to be less reactive [43]. Three of the five
platinum containing compounds are found next within this group (119875,
256927 and 241240). The next set of compounds in this group is composed of
alkyl alkane sulfonates (329680, 102627, 750, 348948 and 338947). Busulfan (750)
has been shown to attack the N-7 atom of guanine, but its ability to cross-link
DNA is not certain. Pyrazoloimidazole (51143) and guanazole (1895) appear
next, and are highly reactive DNA antimetabolites with nitrogen containing
ring structures. The prodrug ftorafur (148958) appears next. The remaining
members of Group 1 fall into two structural classes: the first composed of
nitrosoureas, either alone, or in combination with nitrogen mustards or
guanidine groups (32065, 8806, 3088, 25154, 73754, 353451, 409962, 171112, 95441,
178248, 95466, 79037, 95678, 107392, and 167780), and the second composed of
anthracyclines, anthracenediones and podophyllotoxins (308847, 142892,
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366140, 349174, 355644, 164011. 123127, 82151, 267469 and 141540). The
nitrosourea compounds bearing both chloroalkylating and carbamoylating
(carbamoyl: -R-N-C=0) groups can produce interstrand cross-links in DNA by
preferentially attacking the O-6 position on guanine. The greater antitumor
activity of the compounds in the modified nitrosourea class, when compared
to the parent nitrosourea, has been attributed partly to their greater lipophilic
character [43]. The latter subclass of compounds in this group are doxorubicin
analogs, thought to inhibit DNA topoisomerase II and protein kinase C
mediated signal transduction pathways [43]. The structural similarity of these
latter compounds originates in their anthracene scaffold. The various
congeners in this group do not appear to effectively affect growth inhibitory
behavior, since they all exhibit similar activity patterns in the SVD space
when compared to the complete set of 122 compounds. Three of the
compounds within the group of anthracyclines share a dimethyl or diethyl
amine group (308847, 142892 and 366140). Amonifide (308847) is a
topoisomerase II inhibitor that acts as a DNA intercalator or binder [43], while
pyrazoloacridine (366140) and hycanthone (142982) share an acridine moiety
which may contribute to their similar activities.

The second group of compounds shares structural similarity with members of
Group 1, but has SVD distance patterns different from the first group. Three of
these compounds have aziridine or oxirane groups (6396, 9706 and 132313), four
compounds are nitrogen mustards (762, 34462 and 344007) and one is a
doxorubicin analog (269148). The diepoxides in the oxirane, dianhydrogalactitol
(132313), are presumably responsible for its antitumor activity. Also within this
group are two camptothecin analogs (643833 and 100880) and piperazinedione
(135758), two of these compounds exhibit an alkylation capacity probably because
of their chloride groups. '

The third group (Group 3) includes sixteen compounds. This group includes two
mitomycins (26980 and 56410), the only known natural compounds containing
an aziridine ring [43]. These compounds alkylate guanine at the N-2 position in
the DNA minor groove[43] and differ from one another only by a methyl group.
With the exception of the topoisomerase II inhibitor 249992, the remaining
compounds in this group are camptothecin analogs, that are thought to inhibit
the DNA gyrase enzyme topoisomerase 1. The strong structural similarity within
the camptothecin derivatives is thus also exhibited in their SVD distance




patterns. Groups 4 and 5 consist of six and two camptothecin analogs,
respectively. The cellular activities of the compounds in these two groups are
sufficiently different from the larger set in Group 3 to include them as separate
groups. The structural features responsible for this different activity are not
clearly apparent. These compounds may exhibit similar activity patterns on the
basis of solubility, or cell permeability.

Group 6 consists of only two compounds, the podophyllotoxin, Teniposide
(122819) and the topoisomerase II inhibitor 301379. Although both of these
compounds share structural similarity and activity patterns with the alkylating
compounds in Group 1, their location adjacent to the group of Topoisomerase I
agents suggests that their structural differences produce a distinctly different
activity pattern.

Cluster 7 is a singlet, composed of aphidicolin glycinate (303812). This compound
shares structural similarity with the camptothecin family, and its placement in a
cluster near the camptothecin analogs in Groups 3, 4 and 5 suggests that its
cellular activity may mimic that of Topoisorrierase I inhibitors.

Twelve compounds are found in Group 8. Included in this set are the platinum
containing, DNA intercalating, compounds tetraplatin (363812) and
carboxyphthalatoplatinum (271674). These compounds contain a stabilizing
cyclohexane group that may contribute to their distinctive activity patterns when
compared to the three platinum containing compounds in Group 1. Seven
nucleoside analogs appear within this Group (163501, 126771, 752, 71851, 71261,
118994 and 102816), most of which share a guanine or uracil moiety linked to a
pentose. These compounds are thought to be directly incorporated into DNA [43].
The antibiotic acivicin (163501) and dichloroallyl-lawsone (126771) are thought
to act as an inhibitor of pyrimidine biosynthesis, and their location within the
family of nucleoside analogs is reasonable. The three doxorubicins that complete
this group morpholinodoxorubicin (354646), cyanomorpholino-doxorubicin
(357704) and N,N-dibenzyl duanomycin (268242), share a unique hexopyranosyl
moiety. The two platinum containing alkylating agents and the three
doxorubicin analogs act by directly damaging DNA, while the remaining
compounds in this group are inhibitors of nucleotide synthesis, acting as
DNA/RNA antimetabolites.




The antitubulin agents are found to cluster into five groups. The first group
(Group 9) is composed of six antitubulin agents (330500, 332598, 153858, 49842,
609395, and 376128), one Topoisomerase II inhibitor (337766) and trityl cycteine
(83265). The second group (Group 11) includes Taxol (125973) and a taxol
derivative (608832). The third and fourth groups (Groups 12 and 13, respectively )
include the cholchicines (757, 67574, 406042, 361792) and 33410. These compounds
show weak pattérn similarity to other anticancer agents, which suggests that
these antitubulin agents share similar growth inhibitory mechanisms in the cell

screen.

Group 10, which has an activity pattern that places it between the antitubulin
Groups 9 and 11, consists of a nucleoside analog (19893), two amino acid analogs
(153353 and 224131) and a folate analog (368390). Group 10 is the first cluster of
compounds that lack close SVD distances to members of Groups 1-8. Thus its
activity pattern lacks near SVD distances to groups containing alkylating agents
and Topoisomerase I and II inhibitors with close SVD distances restricted mostly
to members within its group. As will be shown later, this type of activity pattern
may reflect agents that primarily act as inhibitors of nucleotide biosynthesis,
rather than as DNA damaging agents.

An equally distinct activity pattern is also found for the antifolate compounds
composing groups 14 and 15. Group 14 consists of Methotrexate (740) and the
folate-analog (174121), while Group 15 includes the antimetabolites 633713 and
352122. It should be noted that in general, clustering of compounds in this
subgroup is based largely on their SVD distance dissimilarities, rather than
similarities, to the other members in the set of 122 compounds.

Groups 16-22 are all comprised of single compounds, all of which are nucleosides
that act as antimetabolites of nucleotide biosynthesis. As with the folate analogs
discussed above, their activity patterns are sufficiently unique for these

compounds to share no pattern similarities with any of the standard 122 agents.

Folate analogs complete the final three groups. Groups 23 and 24 consist of single
compounds (139105 and 623017, respectively), while Group 25 consists of three
folates (184692, 134033 and 132483). These latter RNA/DNA antimetabolites have
alcohols or ethers substituted at positions C-7 or C-11 of the parent compound




that may contribute to their increased water solubility and unique activity

pattern.

The results described here are consistent with earlier classifications by
Koutsoukos et al. [27] and van Osdol et al. [29] that divided these compounds into
two large clusters. Our analysis finds a similar division of compounds, while
providing further subclustering of compounds within these two major divisions.
The largest division consists of compounds with the most similar activity
patterns, compounds which appear at the top of Table 1, comprised primarily of
DNA—damaging agents (groups 1-8). Compounds in the lower portion of Table 1
comprise the second major division and act by targeting a biosynthetic pathway
or part of the mitotic machinery.

Each of the groups described above can be further examined for their average
activity patterns across the 60 tumor cell lines. Figure 2 displays the mean activity
for the 25 different groups across all 60 tumor cell lines. These results provide an
indication of the diversity of activity patterns associated with the 25 clusters
identified above, and can be used to identify which groups of compounds are
more or less active against individual cell lines or within panels of cells. The
results in Figure 2 are displayed according to the cluster order in Table 1, from
Group 1 to Group 25. Thus alkylating agents (Group 1) appear as the first row and
the activity pattern of Group 25 appears as the last row in this figure. Groups
with positive mean activity patterns (greatest sensitivity) are displayed from least,
to intermediate, to greatest, in orange, red and brown, respectively. Groups with
negative mean activity patterns (least sensitivity) are shown, from least to
intermediate, to greatest, in light blue, blue and dark blue, respectively. Groups

with near zero mean activity patterns are shown in green.

Examination of the mean activity patterns for the 25 clusters obtained from the
cubic clustering algorithm in SAS can be used to qualitatively assess differences
between each group. The agents within Groups 1-3 exhibit a uniformly weak
mean activity pattern across all 60 cell types. Groups 4 and 5 begin to exhibit a
more diverse pattern, with a stronger sensitivity to the panel of CNS cells, as
well as selected RENAL, LEUKEMIA and BREAST cells. Group 4 is composed of
five camptothecin analogs that have an apparent, albeit weak, selectivity for the
CNS panel of cells, with a strong activity against the single BREAST-ADR cell
line. Group 6 is characterized by a strong insensitivity to the BREAST-ADR cell




line, while Group 7 exhibits a strong sensitivity to RENAL-ACHN, LEUKEMIA-
HL60 and NLC-H460. Group 8 appears to have uniform actiirity against all cell
lines. Groups 9-13, the antitubulin active agents, display a modest positive
activity against all members of the BREAST panel, with the exception of BR-
T47D, which displayed a strong insensitivity to these agents and to selected cells
in the COLON panel. Groups 14-16 showed a mixed activity pattern within the
BREAST and COLON panels, with both positive and negative mean activities
within these cells. Group 17 displays a consistently positive activity against most
of the cells within the BREAST panel and only the COLON-HCT15 cells. The
single compounds in Groups 18-24, as well as the three compounds in Group 25,
exhibited a widely diverse range of activity patterns. When compared to all the
clusters identified in this analysis, Groups 18, 20 and 24 had the strongest positive
activity patterns against COLON-HCC2998, MELONOMA-SK-MEL12 and NLC-
EKVYX, respectively. Cells with the least sensitivity to the 122 standard agents are:
NLC- EKVX, BREAST-T47D, HS578T, and MDA231, OVARIAN-OVCAR4,
RENAL- RXF393 and CNS-SNB75.

Our analysis can be used to cluster members of the 60 cell panel according to
their response to the 122 standard anticancer agents. In contrast to the
previous analysis where 122 agents were examined for their activity pattern
across the 60 cell lines, a similar analysis can be performed whereby the 60 cell
lines are examined for their activities against the 122 standard agents.
Clustering of the cell types on this basis can be used to identify each cell type’s
differential response to these standard anticancer agents. Fifteen clusters are
obtained using the cubic clustering analysis (CCC) within SAS. Figure 3
displays a cladogram for clusters obtained in this analysis, with each branch
labeled and color coded according to cell type. Cells are initially separated into
two major branches, with one branch consisting of 15 cell types, while the
remaining 45 cell types appear in the other major branch.

The smaller of the two major branches appears at the rightmost portion of
Figure 3, and is subdivided into four clusters. The largest of these four clusters
consist of RENAL cell types, with UO-31, 786-0, ACHN, CAKI-1 and RXF-393
along with two MELANOMA cell lines, LOX-IMVI and M14. Four of the five
RENAL cells in this panel are know to exhibit multidrug resistance (MDR).
MDR is a known complication of cancer therapy associated with either an
increased expression of the P-170 membrane glycoprotein MDR1 or the




presence of the multidrug resistance protein (MRP) [64, 65]. Both of these
mechanisms actAby lowering the effective drug concentration, enhancing drug
efflux [43] and reducing drug efficacy. The remaining three sub-branches
within this major branch are comprised of four LEUKEMIA, two NLC, one
CNS and one MELANOMA cell type. The LEUKEMIA cell line has the
greatest average sensitivity in mean deviation (Ax = [log GI5o} - < log GI5p>) for
the 122 standard agents. The LEUKEMIA cell type SR appears as a singlet, thus
having no comparable cell type with a similar response to the 122 standard
agents.

The larger of the two major branches found in this analysis is clustered into 4
sub-branches, which are further divided into 17 branches. The leftmost sub-
branch (as viewed in Figure 3) is divided into 7 clusters. The largest cluster in
this group consists of seven cell types, appearing as the left-most branch of the
cladogram. This cluster includes three OVARIAN, two NLC and one
MELANOMA cell type. Adjacent to this cluster are four branches comprised of
only a single cell type: (RE)SN12C, (CNS)SF-268, (BR)BT-549 and
(ME)MALME-3M. Two BREAST cell types (T-47D and MCF7) along with the
LEUKEMIA cell line RPMI-8226 appear in the next cluster. Membership in
this leftmost sub-branch is completed by a cluster comprised of only two
OVARIAN cell types (SK-OV-3 and OVCAR-8) and the singlet (NLC)HOP-92.
The remaining clusters in this major sub-branch consist primarily of NLC,
COLON, BREAST and MELANOMA cell types. Within the clusters formed by
these cell types, a clear separation according to these panels is not apparent
based on their response to the 122 standard agents. An apparent coherence
between the COLON, BREAST and LEUKEMIA panels is clearly indicated,
however the basis for this clustering is not evident. These results indicate
that |

many tumor cell types, both within and between different panels, exhibit
similar sensitivities to the set of 122 compounds studied here. Additional
studies with a larger set of test compounds will be needed to more thoroughly
determine which cell types share the most similar response patterns.

Prediction of MOAs




Mechanism of action classifications can be based on applications of a wide
range of statistical tools [35, 36, 38]. The results in Table 1 show that there is a
substantial similarity between the clusters of compounds based on GIs5g
activity patterns and their classification based on their previously assigned
MOA:s. Yet, subclusters interspersed between clusters of a given MOA are
observable, which call for a more systematic analysis of the degree of
correlation between the GIsg data and MOAs. To this aim we performed the
following analysis: Mean activity fluctuation vectors in the SVD space were
found for each of the six MOASs using

<a¥*>mMoa = Zi aj* /Nmoa | )

Here Nyoa is the number of agents exhibiting a given MOA, and the
summation is performed over this particular subset of agents. The average
activity patterns are thus obtained for each MOA. The departure of the
behavior aj* of individual agents from these averages are examined for an
assessment of the accuracy of the MOAs assigned to the different agents. The
deviation of each drug from the mean activity fluctuation vector for the six
MOA classes is thus

Aaj*poa= ai* - <a*>Moa ' (6)

The smallest of the six distances obtained for each drug is used to identify its
most likely MOA. Application of this test to all compounds in the training set
of 122 standard agents shows that the correct MOAs are assigned with an
average accuracy level of 96.7%. Column 2 in Table 2 summarizes the results
for the six different MAQOs. Weinstein et al. [26] obtained an accuracy level of
91.5% by using neural network model, and 85.8% by linear discriminant
analysis [26].

The accuracy of the MOA assignments for anticancer agents has additionally
been examined by jackknife tests. The jackknife test, also called the leave-one-
out test [45], is a method often utilized for small samples which cannot be
divided into training and testing sets without loss of information. In this
procedure each compound to be tested is removed from the training dataset
and the identification of the activity fluctuation Aaj*poa for each MOA is
carried out using the GI5p data of the remaining 121 drugs. The most probable




MOA of the test compound is then predicted using the same distance criteria
(eq 6), with the basic difference that the mean fluctuation vectors <a*>poa are
now extracted from a set of data excluding the test compound. The average
accuracy level reached by this method was 84.4%. A summary of these results
is presented in the third column of Table 2. The mispredicted compounds and
their predicted MOA's are listed in Table 3. Most of the 19 mispredicted
compounds were classified as topoisomerase II agents or DNA/RNA
antimetabolites, with the majority of these agents predicted to behave as
alkylators.

Discussion

NCI's 60 cell line screening assay provides a measure of growth inhibition for
human cancer cells exposed to candidate anticancer compounds. Activity data
accumulated in these screens can be used to group agents that exhibit similar
activity patterns across a broad variety of tumor cell lines. Compounds
grouped according to pattern similarities can be further examined for possible
relationships between their activities, their chemical substructures and/or
MOAs. The results presented here apply the standard statistical method of
singular value decomposition (SVD) to the log(GlIsp) data to define measures
of distances between compounds in a space that best distinguishes their
similarities and dissimilarities. Hierarchical clustering of these SVD-derived
distances divides these 122 compounds into 25 groups. The first eight groups
are predominantly formed by DNA-damaging agents, while the latter
seventeen groups (9-25), mostly consist of agents that inhibit nucleic acid
biosynthesis or mitosis. Compounds in the first class comprise MOAs assigned
as alkylators, and inhibitors of topoisomerases I and II, along with a few DNA
antimetabolites, while the latter class is dominated by antimitotic agents and
antimetabolites.

DNA damaging agents (Groups 1-8), when observed together, exhibit strongly
similar activity patterns. Agents such as DNA alkylators and DNA metalators
(platinum agents) are equally effective against slowly dividing or non-
dividing cells (termed G, cells). Since strong pattern similarities are observed
among alkylators and platinum analogs, it is reasonable to conclude that
these compounds have comparable activities against all cell types, as
evidenced by the uniform activity pattern for these groups. Thus compounds




that act directly on DNA, either by cross-linking or less directly by inhibiting
enzymes responsible for processing DNA (i.e. unwinding) fall into this first
group. While alkylating agents would be expected to be included in the class of
DNA-damaging agents, the present finding that topoisomerase inhibitors
behave similarly to alkylating agents is unexpected. However, inhibition of
topoisomerases result in DNA damage, with repair modulated by the impact
of the damage. Earlier studies have found that some topoisomerases are
constitutively expressed at relatively constant levels throughout the cell cycle,
even in cells that are not actively dividing [46]. Thus inhibitors of
topoisomerases may potentially be active in tumors that have low growth
fractions [43] and as a result exhibit cytotoxic behavior similar to alkylating

agents.

The second major class of compounds identified in our analysis acts against
the enzymatic machinery required for cell division. Most of these compounds
inhibit purine or pyrimidine biosynthesis or act as antitubulin agents.
Evidence to support this claim can be found in the crystallographic complexes
between biosynthetic enzymes and ligands that are either identical to those
included in the set of 122 compounds, or close structural analogs. Although it
is not our intention here to present a systematic analysis of structural data in
support of this claim, Appendix A summarizes our survey of the
crystallographic database of proteins complexed with ligands that bear strong
structural similarity to many of the antimetabolite agents in the set of 122

compounds.

A strong correspondence was not observed between specific MOAs of
compounds assigned to each cluster. For example, alkylating agents and
topoisomerase I and II inhibitors appear in most of the first 8 clusters. The
results of this analysis are, however, sufficiently meaningful to yield a MOA
prediction accuracy greater than 84%. Inspection of the subclusters obtained
from this analysis finds compounds that both share and lack structural
similarity. |

‘Many approaches are available for classification of compounds by chemical
structure [30, 52]. Some approaches are based on one-dimensional (1-D) global
features such as polarizability, molecular weight, and number of hydrogen
bond donors/acceptors [53, 54]. Alternative approaches attempt to maximize a




selection of 2-dimensional (2-D) and 3-dimensional (3-D) indices assigned to
each compound [55-57]. Some of the more commonly used descriptors are
based on chemical formula [57], 2-D topological similarity [58-61] and 3-D
superposition [62]. Using sets of indices representative of these descriptors,
compounds can be assigned a 'fingerprint' which can be used for assessing
similarities within groups of compounds [17]. Clusters of the 122 compounds
examined here, based on a set of 54 1-D descriptors available in the Cerius
package and based on 2-D SMILES descriptors, found no statistically significant
correlation with the activity patterns from the screening assay. Taken
separately or together, no combination of these 1-D or 2-D descriptors could be
found to produce a statistically significant correlation with the activity
patterns observed for the 122 agents examined here. Although examination of
Figure 1 provides clear evidence that many compounds within each group
have common substructural features, a systematic means of assigning these
compounds to these groups, on the basis of 1-D and 2-D descriptors alone, was
not apparent. These results are consistent with widespread observations such
as those of Brown et al. [58], where small chemical modifications can result in
quite different biological responses. The family of camptothecins offers a clear
example of such behavior, i.e. small differences in the parent structure
resulted in quite different activity patterns. Our results emphasize the
importance of assessing structural information together with screening data to

assess biological activity.

One important question arises about studies such as that presented here -
What is the effect of data errors on the results? Single compounds, such as
those clustered in Groups 16-24 above, are easily distinguished in this type of
analysis. Hierarchical clustering of SVD distances alone identifies these
singlets on the basis of their position in a separate branch of the tree. The
additional classification based on pairwise differences in SVD distances with
respect to the whole set of compounds can be further used to determine
whether compounds isolated in a single branch of the tree have an important
different activity pattern, or lack any such feature.

Measurement errors that appear in the reported log(Glsp) values represent
another type of error. These errors result from experimental conditions as
well as errors in data reporting. In an attempt to address the importance of
these types of errors on our results, the current dataset was perturbed with




random noise and the SVD distances were recalculated. Figure 4 displays the
results of perturbing the current set of log(GIsp) values by an error that ranges
from zero to 40%. The ordinate in Figure 4 represents the correlation
coefficient [63] between the matrix of SVD distances calculated for the
unperturbed and perturbed datasets. There we see that perturbing the existing
data with 20% error yields an SVD distance matrix whose entries are still
correlated with the original data with a correlation coefficient of 0.9. By
contrast, a 40% error produces a correlation coefficient near 0.7. From this
analysis we believe that data error in the range of 10 to 20% should yield
results extremely similar to those reported here. The actual error in this data
is difficult to establish. An estimate of the maximum error can be obtained by
calculating the coefficient of variation (C.V. = ¢/ 10g(GI50)) for the log(GIsp)
values obtained for each compound. The variance (o) is estimated therein as
the squared sum of Ax;j calculated in equation 3. This method yields a
coefficient of variation of 0.87 (or a percentage error of 13%), which according
to Figure 4, corresponds to a correlation coefficient of 0.95. We conclude that
the results of our analysis are robust enough to sustain errors lower than 15%
without significant degradation. The experimental data used in our study
include results from multiple replicate analysis performed between 2 to 50
replicates, which would reduce the measurement noise.

Based on the above observation that selected cell types could be clustered
according to their response to the 122 standard agents, we explored whether
differences in SVD distance clusters would occur from analyses based on
subsets of selected cell types that are known to exhibit multidrug resistance
(MDR). Based on the relative expression of MDR-1 mRNA and the
immunocytochemical characterization of P-glycoprotein expression [66], |
eight MDR1 expressing cell types are identified: HCT-15(CO), SF-295(CNS),
HOP-62(NLC), UO-31(RE), A498(RE), ACHN(RE), CAKI-1(RE) and RXF-
393(RE). This selection conforms most closely to those cells exhibiting the
highest rhodamine efflux measurements as posted on the Developmental
Therapeutics’ web page (http://dtp.nci.nih.gov). Clustering analysis was
performed using (i) the log(GIsp) values from the 8 MDR1 expressing cell

lines, and (ii) the log(GIsp) values from the 52 non-MDR1 expressing cell lines
in the screen. The analysis based on the 52 non-MDR1 expressing cells
clustered compounds qualitatively similar to that obtained for the complete
set of 60 cell lines. The analysis performed on the 8 MDR1 expressing cells




found that the activity patterns within this group had similar SVD distances,
and their activity pattern with respect to their response to the 122 standard
agents was quite similar to that found for the previously classified DNA-
damaging agents. In particular, the antitubulin agents found in Groups 9, 11,
12 and 13 exhibit SVD distances that are similar to the members of the DNA
damaging agents in Groups 1-8. In addition to this subset of antimitotic agents,
the antimetabolites found in Groups 14-25 also display SVD distance patterns
that reflect patterns closely resembling that of the DNA damaging agents. This
result is consistent with the view that MDR is associated with the increased
efflux of etoposides, anthracyclines (topoisomerase II inhibitors), colchicines
and vinca alkaloids (antimitotic agents) [43, 44], and also demonstrates that
agents that inhibit nucleotide biosynthesis are also affected. The result of
multidrug resistance is a more uniform activity pattern across all cell panels, a
feature characteristic of DNA damaging agents.

The results presented herein can be contrasted with those available from the
web-accessible program COMPARE. Comparisons of the Pearson Correlation
Coefficients (PCC) of the 122 standard agents with the SVD distances were not
statistically significant. The strongest differences were observed for
compounds with statistically significant PCC values (above PCC=0.38, p<0.05,
n=59) that were found to have large SVD distances. For example, the highest
PCCs for the set of 122 standard anticancer agents are found for most of the
compounds classified, by our analysis, as DNA damaging agents. A COMPARE
analysis based on a ‘seed” selected from compounds in Groups 1-6 found
statistically significant ‘hits’ for over half of the 122 standard agents, many of
which were found to have large SVD distances. Instances where statistically
significant PCC values corresponded to near SVD distances were observed for
compounds in Groups 8, 10, 11 and 12 and the single compounds in Groups
14-24. Thus better agreement between the two approaches was found for
compounds that inhibit nucleic acid biosynthesis or mitosis. While it is not
our intention here to produce a detailed comparison of these two methods, it
is clear that both approaches yield varying degrees of agreement, depending
on the compound of interest. ‘

In summary, statistical clustering tools have been used to analyze the growth
inhibitory potency data available from the NCI's 60 tumor cell line screen.
Analysis of the results for 122 standard anticancer agents finds that this set of




compounds can be clustered according to screening patterns into 25 groups,
with eight of these groups consisting of DNA damaging agents and the
remaining groups consisting of agents that act either to inhibit nucleotide
biosynthesis or mitosis. Structural similarities are found between compounds
assigned to these two broad categories. Clustering of the cell types based on
their response to the 122 standard agents divided the cells into two major
branches which were further sub-divided into 21 groups. Strongest within-
panel responses were found for the RENAL, OVARIAN and LEUKEMIA
panels. The current analysis provides a reference for evaluating larger data
sets of compounds for similarities in their screening patterns with respect to
the standard 122 anticancer agents. Analyses of these larger data sets may be
able to relate more precisely chemical substructure to activity.
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Table 1. Compounds Ordered According to Pattern Similarity.
Cluster |Name NSC MOA | structural group

1 teroxirone 296934 1 epoxide

1 AZQ 182986 1 aziridine

1 CHIP 256927 1 platinum

1 cis-platinum 119875 1 platinum

1 carboplatin 241240 1 platinum

1 hepsulfam 329680 1 alkane sulfonate

1 Yoshi-864 102627 1 alkane sulfonate

1 Busulfan 750 1 alkane sulfonate

1 cyclodisone 3489438 1 alkane sulfonate

1 clomesone 338947 1 alkane sulfonate

1 guanazole 1895 6

1 pyrazoloimidazole 51143 6

1 ftorafur (pro-drug) 148958 5 :

1 hydroxyurea 32065 6 hydroxyurea

1 melphalan 8806 1 nitrogen mustard

1 chlorambucil 3088 1 nitrogen mustard

1 br-propionyl piperazine | 25154 11 nitrogen mustard

1 fluorodopan 73754 1 nitrogen mustard

1 mitozolamide 353451 1 nitrogen mustard

1 BCNU (Carmustine) 409962 1 nitrosourea-nitrogen mustard
1 spirohydantoin mustard | 172112 1 nitrogen mustard

1 methyl CCNU 95441 1 nitrosourea-nitrogen mustard
1 chlorozotocin 178248 1 nitrosourea-nitrogen mustard
1 PCNU 95466 1 nitrosourea-nitrogen mustard
1 CCNU 79037 1 nitrosourea-nitrogen mustard
1 3-HP 95678 6 hydrazinecarbonthioamide
1 5-HP 107392 6 hydrazinecarbonthioamide
1 asaley 167780 1 nitrogen mustard

1 amonafide 308847 4 -

1 hycanthone 142982 1 -

1 pyrazoloacridine (PZA) | 366140 4 acridine

1 oxanthrazole 349174 4 anthracene

1 anthrapyrazole derivativq 355644 4 anthracene

1 rubidazone 164011 4 anthracene dione

1 doxorubicin (Adriamycin) | 123127 4 anthracene-daunorubicin

1 daunorubicin 82151 4 anthracene-daunorubicin

1 deoxydoxorubicin 267469 4 anthracene-daunorubicin

1 VP-16 141540 4 podophyllotoxin

2 thio-tepa 6396 1 aziridine

2 triethylenemelamine 9706 1 aziridine

2 dianhydrogalactitol 132313 1 epoxide

2 nitrogen mustard 762 1 nitrogen mustard

2 uracil nitrogen mustard 34462 1 nitrogen mustard

2 piperazine analog 344007 1 nitrogen mustard

2 piperazinedione 135758 1 piperazine




2 camptothecin derivative | 643833 3 camptothecin

2 camptothecin, Na salt 100880 3 camptothecin _
2 menogaril 2691438 4 anthracene-daunorubicin
3 mitomycin C 26980 1 mitomycin

3 porfiromycin 56410 1 mytomycin

3 camptothecin 94600 3 camptothecin

3 camptothecin derivative | 95382 3 camptothecin

3 camptothecin derivative | 107124 3 camptothecin

3 m-AMSA (Amsacrine) 249992 4 anthracene

3 camptothecin derivative | 295501 3 camptothecin

3 camptothecin derivative | 606173 3 camptothecin

3 camptothecin derivative | 364830 3 camptothecin

3 camptothecin derivative | 374028 3 camptothecin

3 aminocamptothecin 603071 3 camptothecin

3 camptothecin derivative | 606172 3 camptothecin

3 camptothecin derivative | 606985 3 camptothecin

3 camptothecin derivative | 610457 3 camptothecin

3 camptothecin derivative [ 610458 3 camptothecin

3 camptothecin derivative | 618939 3 camptothecin

4 camptothecin derivative | 249910 3 camptothecin

4 camptothecin derivative | 606947 3 camptothecin

4 camptothecin derivative | 606499 3 camptothecin

4 camptothecin derivative | 610456 3 camptothecin

4 camptothecin derivative | 610459 3 camptothecin

4 camptothecin derivative | 629971 3 camptothecin

5 camptothecin derivative | 176323 3 camptothecin

5 camptothecin derivative [ 295500 3 camptothecin

6 VM-26 (Teniposide) 122819 4 podophyllotoxin

6 mitoxantrone 301739 4 anthracene

7 aphidicolin glycinate 303812 6 aphidicolin

8 tetraplatin 363812 1 platinum

8 carboxyphthalatoplatinun 271674 1 platinum

8 acivicin 163501 5 amino acid analog

8 dichlorallyl lawsone 126771 5 napthoquinone

8 thioguanine 752 6 guanine

8 alpha-TGDR 71851 6 guanine

8 beta-TGDR 71261 6 guanine

8 inosine glycodialdehyde | 118994 6 guanine

8 5-azacytidine 102816 5 cytidine

8 cyanomorpholinodoxorubid 357704 1 anthracene-daunorubicin
8 morpholinodoxorubicin 354646 3 anthracene-daunorubicin
8 N, N-dibenzyl daunomycir| 268242 4 anthracene-daunorubicin
9 macbecin II 330500 |6 lactone

9 rhizoxin 332598 2 macrolide




9 maytansine 153858 2 macrolactam

9 vinblastine sulfate 49842 2 vinca alkaloid

9 halichondrin B 609395 2 polyether macrolide

9 trityl cysteine 83265 2 tri-phenyl

9 bisantrene HCL 337766 4 anthracene

9 dolastatin 10 376128 2 modified peptide

10 L-alanosine 153353 5 aspartate analog

10 N-(phosphonoacetyl)-L-. | 224131 5 aspartate analog
aspartate '

10 5-fluorouracil 19893 5 uracil analog

10 brequinar 368390 5 folate analog

11 taxol 125973 2 taxane

11 taxol derivative 608832 2 taxane

12 colchicine derivative 33410 2 colchicine

12 allocolchicine 406042 2 colchicine

12 thiocolchicine 361792 2 colchicine

13 colchicine 757 2 colchicine

13 vincristine sulfate 67574 2 vinca alkaloid

14 methotrexate 740 5 folate analog

14 methotrexate derivative | 174121 5 folate analog

15 L-ornithine 633713 5. folate analog

15 trimetrexate 352122 5 folate analog

16 thiopurine 755 6 purine

17 5-aza-2'-deoxycytidine 127716 6 cytidine

18 2'-deoxy-5-fluorouridine | 27640 6 uridine

19 ara-C 63878 6 uridine

20 5,6-dihydro-5-azacytiding 264880 5 cytidine

21 pyrazofurin 143095 5 pyrazofurin

22 cyclocytidine 145668 6 cytidine

23 Baker's antifol soluble 139105 5 folate

24 an antifol 623017 5 folate analog

25 aminopterin derivative | 184692 5 folate analog

25 aminopterin derivative | 134033 5 folate analog

25 aminopterin derivative | 132433 5 folate analog




Table 2. Performance of SVD Analysis for Determining MOAs

Mechanism Success % Success %

of action* training set Prediction set
1(35) 97 97

2(13) 92 85

3(24) 96 96

4 (15) 100 87

5 (19) 100 63

6 (16) 94 63

AVG-(122) 96.7 84.4

*MOA

1 - Alkylating

2 — Antimitotic

3 - Topoisomerase I inhibitors
4 — Topoisomerase II inhibitors
5 — RNA/DNA Antimetabolites
6 — DNA Antimetabolites




Table 3. MOA Classification for Incorrectly Predicted MOAs

NSC ‘| Name Assigne |Predicted
Number d MOA |MOA
357704 cyanomorpholinodoxorubicin 1 3
153858 maytansine 2 6
67574 vincristine sulfate 2 6
354646 morpholinodoxorubicin 3 4
268242 N ,N-dibenzyl daunomycin 4 1
366140 pyrazoloacridine 4 1
148958 Ftorafur 5 6
102816 5-azacytidine 5 4
264880 5,6-dihydro-5-azacytidine 5 1
174121 methotrexate derivative 5 6
139105 Baker's soluble antifol 5 2
132483 aminopterin derivative 5 3
623017 an antifol 5 6
63878 ara-C 6 1
27640 2'-deoxy-5-fluorouridine 6 1
127716 5-aza-2'-deoxycytidine 6 4
330500 Macbecin II 6 1
95678 3-HP 6 1
32065 hydroxyurea 6 1




Figure Captions

Figure 1. Two-dimensional representations of the chemical structures of the
122 compounds analyzed in this study. Compounds are ordered into 25 groups
as described in the text. Structurally similar compounds are displayed together
within each group. This figure has been prepared using the ISIS/DRAW
software package. '

Figure 2. Average activity across the 60 cell lines for compounds in each of the 25
groups. Panels of cells are ordered from bottom to top as follows: CNS,
PROSTATE, MELANOMA RENAL, LEUKEMIA, OVARIAN, BREAST, COLON
and NLC. Groups with a positive mean activity pattern are displayed from least,
to intermediate, to greatest, in orange, red and brown, respectively. Groups with
negative mean activity patterns are shown, from least to greatest, in light blue,
blue and dark blue, respectively. Groups with mean activity patterns near zero

are shown in green.

Figure 3. Cladogram of SVD distances for the 60 cell types determined from
the activity data for the standard 122 anticancer agents. Branch labels are
colored according to cell panels; black:non-small cell lung carcinoma(NLC),
light green:COLON, magenta:LEUKEMIA, red:OVARIAN, dark
green:RENAL, brown:MELANOMA, light blue:PROSTATE, black:CNS. (Note
that the color black has been used for both NLC and CNS.) The abbreviations
for each panel also appear in the label for each branch. The GROWTREE
Utility from the GCG software package has been used to generate this figure.
Cluster assignments, from left to right, are as follows; Cluster 1: (ME)UACC-
62, (OV)OVCAR-5, (OV)OVCAR-4, (NLC)NCI-H322M, (OV)IVGROV1,
(NLC)A549/ATCC, (RE)SN12C. Cluster 2: (CNS)SF-268. Cluster 3: (BR)BT-549.
Cluster 4: (ME)MALME-3M. Cluster 5: (BR)T-47D, (BR)YMCF7, (LE)RPMI-8226.
Cluster 6: (OV)SK-OV-3, (OV)OVCAR-8. Cluster 7: (NLC)HOP-92. Cluster 8:
(ME)SK-MEL-5, (NLC)EKVX, (RE)TK-10, (CNS)SNB-19, (CO)SW-620, (LE)K-
562. Cluster 9: (CO)HCT-15. Cluster 10: (PR)PC-3, (BR)MDA-231. Cluster 11:
(BR)HS-578T, (CO)HT29. Cluster 12: (BR)MDA-N, (BR)MDA-435,
(OV)OVCAR-3, (CO)COLO-205, (COYHCC-2998, (CNS)SF-295. Cluster 13:
(PR)DU-145. Cluster 14: (NLC)NCI-H226, (NLC)NCI-H23, (RE)A498, (ME)SK-
MEL-28, (NLC)NCI-H460, (CNS)U251. Cluster 15: (CNS)SNB-75. Cluster 16:
(ME)SK-MEL-2, (CO)KM12, (CO)HCT-116. Cluster 17: (BR)NCI/ADR. Cluster
18: (ME)M14, (RE)RXF-393, (MEL)LOX-IMVI, (RE)CAKI-1, (RE)ACHN,




(RE)786-0, (RE)UO-31. Cluster 19; (LE)MOLT-4, (LE)CCRF-CEM, (ME)UACC-
257, (NLC)HOP-62. Cluster 20: (LE)SR. Cluster 21: (CNS)SF-539, (LE)HL-60(TB),
(NLC)NCI-H522.

Figure 4. Sensitivity analysis of present SVD results. Correlation coefficients
between the results found from SVD derived distances based on original
log(GIsp) data, and those based on the randomly perturbed log(GIsp) data. The

ordinate represents the percentage error introduced upon perturbation of the

original data set.
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Appendix A. Survey results from an analysis of available crystal structures
complexed with ligands that are structurally similar to the standard anticancer

agents analyzed here.

Table 4 lists the protein complexes identified here for investigating this issue.
Our intention here is not to provide a complete list of all structural analogs
within the Protein Data Bank (PDB) [47], but to indicate the range of protein
structures that are known to form complexes with the structural analogs to
the 122 anticancer agents. The results presented in Table 4 were obtained using
the SMILES-based searching tools available in the RELIBASE part of the PDB
browser (http:/ /www.pdb.bnl.gov). The first column in the table describes the
types of enzymes, the second and third give the name and PDB identifier of
each enzyme, the fourth column is the ligand bound in the complex, and the
fifth column lists the anticancer agents that are either identical or structural
analogs to the standard 122 anticancer agents. '

The results in Table 4 directly indicate the sites of action of many of the agents
assigned to groups 9-25 of our cluster analysis. For example, crystallographic
complexes exist for most of the enzymes involved in pyrimidine biosynthesis
pathway. This pathway involves six enzymatically catalyzed steps. The CAD
gene encodes a trifunctional protein associated with the activity of the first
three enzymes in this six-step pathway: carbanioylphosphate synthase (EC
6.3.5.5), aspartate transcarbamoylase (EC 2.1.3.2), and dihydroorotase (EC
3.5.2.3) -also referred to as CPSase, ATCase and DHOase, respectively-.
Crystallographic complexes exist for acivicin (163501) bound to CPSase, PALA
(224131) bound to ATCase and brequinar (368390) bound to DHOase. In
addition, the sites of action of methotrexate (740) as well as other folate
byproducts include dihydrofolate reductase, thymidylate synthase, AICAR
transformylase and GAR transformylase; all of which are included in the set
of complexes listed in Table 4. Purine biosynthesis occurs by de novo pathways
as well as from preformed nucleosides and nucleotides via salvage reactions
[48]. Phosphoribosyl kinases and transferases are involved in both processes,
and are found in crystallographic complex with many of the nucleoside
analogs included in this study. A surprising finding includes the recent
dimeric structure of tubulin in complex with a taxane. A nucleoside analog is
also bound at the dimer interface between the o and B tubulin subunits [49-51].
Taken together, these crystallographic complexes indicate that many of the




antitumor agents included in these groups target one or in some cases many
proteins involved in nucleic acid biosynthesis or mitosis. The cell screening
patterns of these compounds, when clustered according to the methods used
here, clearly separate these compounds from DNA-damaging agents.
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Table 4. Proteins Complexed with Ligands Similar to Anticancer

Agents.
Enzyme Name PDB |ligand NSC
Class
ligase carbamoyl phosphate 1jdb GLN chan 163501(D)
synthase
' 1jdb ADP 71851,71261(D)
hydrolase cytidine deaminase laln 3-deazacytidine 102816(D),143095(G)
’r lctt dihydrozebularine | 102816(D),143095(G,
264880(E)
' lctu zebularine 148958(D),264880(E)
oxido- dihydroorotate 2dor flavin 148958(D),2764 0(G)
reductase dehydrogenase mononucleotide
y 2dor orotic acid 148958(D)
diaminopimelic acid ldap |[NDP 71851,71261(D)
dehydrogenase
. 1DAP | DA3 163501(D)
cyclooxygenase 3pgh | flurbiprofen 368390(E)
dihydrofolate reductase lai9 NDP 71851,71261(D)
' lao8 | MTX 740(G)
» 1dhf | MTX 740(G)
transferase thymidylate synthase 1bjg 5-F-deoxyuridine 148958(G)
' 1bjg hydrofolic acid 623017,174121(G)
,” 1vzd dideazafolic acid 134033(G)
» 2tdd hydrofolic acid 134033(G)
. 1tls 5-F-deoxyuridine 148958(G)
' 1lce hydrofolic acid 132483(G)
amidotransferase carbamoyl | 1a9x | GLN 163501(D)
phosphate synthetase
’ la9x | ADP 71851,71261(D)
v 2tdd | hydrofolic acid -1 134033(G)
' 1tls 5-F-deoxyuridine 148958(G)
. 1lce hydrofolic acid 132483(G)
/ . ]1a9x | GLN 163501(D)
aspartate transcarbamylase | lacm | PALA 224131(D)
phosphoribosyl transferase | lopr orotic acid 148958,102816(D)
' 1sto orotidine 148958,27640(D)
carbamoyl transferase 1rai cytidine 102816,27640(D)
phosphoribosyglycinamide |lcde | ribonucleotide 102816(D)
formyltransferase lgar | U89 118994,71851
71261(D)
methyltransferase 1v39 | homocysteine 71261,71851(D)




transferase nucleotidyl transferase lwaf | GMP 71261,71851(D)
thioredoxin 1t7p guanosine 71261,71851(D)
nucleoside phosphorylase | 1a69 | formycin 143095(G)
' 1a9t | hypoxanthine 71851,71261(D)
,r 1a9t ribose-1-phosphate | 102816(D)
diphosphate kinase lbe4 | guanosine 71261,71851(D)
diphosphate kinase lkdn | ADP 71261,71851(D)
adenylate kinase 1dvr | adenosine 71261,71851(D)
thymidine kinase 1kim | thymidine 27640(G)
protein kinase inhibitor lkpe | adenosine 71261,71851(D)
purine phosphorylase lvin | hypoxanthine 71851, 71261(D)
UMP/CMP kinase 2ukd | ADP C5P 71851, 71261(D)

Microtubules 0./ tubulin dimer 1tub gtp,gdp 71851, 71261(D)

ltub taxotere 125973




